1,097 research outputs found

    Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes

    No full text
    Arctic land-cover changes induced by recent global climate change (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modelling and paleo-observations. The sub-continental region of Beringia (Northeast Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia’s early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present day simulations of regional climate, one with modern and one with 11 ka geography, plus another simulation for 6 ka. In addition, we performed five ? 11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka “Control”, which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal vegetation types distributed as suggested by the paleoecological record, (iv) thaw lakes, which used the present day distribution of lakes and wetlands; and (v) post-11 ka “All”, incorporating all boundary conditions changed in experiments (ii)–(iv). We find that regional-scale controls strongly mediate the climate responses to changes in the large-scale controls, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in the simulated climate changes. The change from tundra to deciduous woodland produces additional widespread warming in spring and early summer over that induced by the 11 ka insolation regime alone, and lakes and wetlands produce modest and localized cooling in summer and warming in winter. The greatest effect is the flooding of the land bridge and shelves, which produces generally cooler conditions in summer but warmer conditions in winter and is most clearly manifest on the flooded shelves and in eastern Beringia. By 6 ka continued amplification of the seasonal cycle of insolation and loss of the Laurentide ice sheet produce temperatures similar to or higher than those at 11 ka, plus a longer growing season

    The Long-Term Future of Extragalactic Astronomy

    Get PDF
    If the current energy density of the universe is indeed dominated by a cosmological constant, then high-redshift sources will remain visible to us only until they reach some finite age in their rest-frame. The radiation emitted beyond that age will never reach us due to the acceleration of the cosmic expansion rate, and so we will never know what these sources look like as they become older. As a source image freezes on a particular time frame along its evolution, its luminosity distance and redshift continue to increase exponentially with observation time. The higher the current redshift of a source is, the younger it will appear as it fades out of sight. For the popular set of cosmological parameters, I show that a source at a redshift z=5-10 will only be visible up to an age of 4-6 billion years. Arguments relating the properties of high-redshift sources to present-day counterparts will remain indirect even if we continue to monitor these sources for an infinite amount of time. These sources will not be visible to us when they reach the current age of the universe.Comment: Phys. Rev. D, in press (2001

    The staggered domain wall fermion method

    Get PDF
    A different lattice fermion method is introduced. Staggered domain wall fermions are defined in 2n+1 dimensions and describe 2^n flavors of light lattice fermions with exact U(1) x U(1) chiral symmetry in 2n dimensions. As the size of the extra dimension becomes large, 2^n chiral flavors with the same chiral charge are expected to be localized on each boundary and the full SU(2^n) x SU(2^n) flavor chiral symmetry is expected to be recovered. SDWF give a different perspective into the inherent flavor mixing of lattice fermions and by design present an advantage for numerical simulations of lattice QCD thermodynamics. The chiral and topological index properties of the SDWF Dirac operator are investigated. And, there is a surprise ending...Comment: revtex4, 7 figures, minor revisions, 2 references adde

    Fermion-scalar interactions with domain wall fermions

    Get PDF
    Domain wall fermions are defined on a lattice with an extra direction the size of which controls the chiral properties of the theory. When gauge fields are coupled to domain wall fermions the extra direction is treated as an internal flavor space. Here it is found that this is not the case for scalar fields. Instead, the interaction takes place only along the link that connects the boundaries of the extra direction. This reveals a richness in the way different spin particles are coupled to domain wall fermions. As an application, 4-Fermi models are studied using large N techniques and the results are supported by numerical simulations with N=2. It is found that the chiral properties of domain wall fermions in these models are good across a large range of couplings and that a phase with parity-flavor broken symmetry can develop for negative bare masses if the number of sites along the extra direction is finite.Comment: LaTeX, 17 pages, 8 eps figures; comment regarding the width of Aoki phase added in sec. 3; references adde

    Development of an Efficient Extraction Method to Quantify Microcystin–LR from Natural Microcystis Bloom Samples from the Colombo Lake, Sri Lanka

    Get PDF
    Microcystins are a diverse group of hepatotoxic secondary metabolites produced bycyanobacteria (blue-green algae). Up to date more than 90 different Microcystins wereidentified. Among them, Microcystin-LR (MC-LR) is one of the most toxic and mostcommonly encountered Microcystin variants worldwide. Although detection and extractionmethods for Microcystins have been previously reported, there are no such techniquesavailable in Sri Lanka regarding the water safety monitoring. Therefore in this study, we aimto develop an efficient extraction and quantification method of intracellular and extracellularMicrocystins from natural Microcystis bloom samples. Collection of bloom material from theColombo Lake, Sri Lanka was carried out for a period of six months from January to June2013. Samples were filtered through GF-C filters to retain cyanobacterial cells (intracellularMicrocystins) and extracellular Microcystins to pass through. Intracellular Microcystins (GFCfilters) were extracted repeatedly (x2) in 80% methanol, rotary evaporated and the residuewas reconstituted in 100% methanol. Extracellular Microcystins were extracted by C18 solidphaseextraction cartridges and eluted in 80% methanol. The cool-dry method carried out wassimilar to the GFC-filter extraction; however, the filter was subjected to heating at 550C for15 min followed by cooling (15 min) prior to the 80% methanol extraction. During thecentrifugation method, 1 litre of bloom material was centrifuged (3,000 g, 20 min). The pelletwas extracted in 100% methanol, rotary evaporated (40 0C) and the residue was reconstitutedin 80% methanol. The supernatant was solid phase extracted using C18 cartridges and elutedin 80% methanol. Identification and determination of the intracellular and extracellularMicrocystin concentration were performed by photodiode array – high performance liquidchromatography. Recovery of 17.57±0.73, 15.81±0.44 and 14.66±1.04 ppm of totalmicrocystin-LR (intracellular and extracellular) was recorded for the filter method. Incontrast, total MC-LR extracted by the cool-dry method was 0.48±0.005, 0.32±0.03 and0.22±0.07 ppm. However, compared to other two methods, centrifugation method achievedthe highest total recovery of MC-LR (16.86±2.11, 15.71±1.73 and 13.77±0.04 ppm). Thus, itreveals that the filter method and centrifugation method are the most efficient extractionmethods for MC-LR from natural bloom samples. Further optimization of these methodswould enhance the monitoring and safety measures for the drinking and recreational waterreservoirs in Sri Lanka

    Cluster Spin Glass Distribution Functions in La2x_{2-x}Srx_xCuO4_4

    Full text link
    Signatures of the cluster spin glass have been found in a variety of experiments, with an effective onset temperature TonT_{on} that is frequency dependent. We reanalyze the experimental results and find that they are characterized by a distribution of activation energies, with a nonzero glass transition temperature Tg(x)<TonT_g(x)<T_{on}. While the distribution of activation energies is the same, the distribution of weights depends on the process. Remarkably, the weights are essentially doping independent.Comment: 5 pages, 5 ps figure

    Bonding in MgSi and AlMgSi Compounds Relevant to AlMgSi Alloys

    Full text link
    The bonding and stability of MgSi and AlMgSi compounds relevant to AlMgSi alloys is investigated with the use of (L)APW+(lo) DFT calculations. We show that the β\beta and β\beta'' phases found in the precipitation sequence are characterised by the presence of covalent bonds between Si-Si nearest neighbour pairs and covalent/ionic bonds between Mg-Si nearest neighbour pairs. We then investigate the stability of two recently discovered precipitate phases, U1 and U2, both containing Al in addition to Mg and Si. We show that both phases are characterised by tightly bound Al-Si networks, made possible by a transfer of charge from the Mg atoms.Comment: 11 pages, 30 figures, submitted to Phys. Rev.

    Instream and riparian implications of weed cutting in a chalk river

    Get PDF
    Macrophyte growth is extensive in the iconic chalk streams that are concentrated in southern and eastern England. Widespread and frequent weed cutting is undertaken to maintain their key functions (e.g. flood water conveyance and maintenance of viable fisheries). In this study, a multidisciplinary approach was adopted to quantify coincident physico-chemical responses (instream and riparian) that result from weed cutting and to discuss their potential implications. Three weed cuts were monitored at a site on the River Lambourn (The CEH River Lambourn Observatory) and major instream and riparian impacts were observed. Measurements clearly demonstrated how weed cutting enhanced flood flow conveyance, reduced water levels (river and wetland), increased river velocities, and mobilised suspended sediment (with associated chemicals) and reduced the capacity for its retention within the river channel. Potential implications in relation to flood risk, water resources, downstream water quality, instream and riparian ecology, amenity value of the river, and wetland greenhouse gas emissions were considered. Provided the major influence of macrophytes on instream and riparian environments is fully understood then the manipulation of macrophytes represents an effective management tool that demonstrates the great potential of working with nature

    Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material

    Full text link
    We report on experiments to measure the temporal and spatial evolution of packing arrangements of anisotropic, cylindrical granular material, using high-resolution capacitive monitoring. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical vibrations evolve to a dense, highly ordered, nematic state in which the long particle axes align with the vertical tube walls. We find that the orientational ordering process is reflected in a characteristic, steep rise in the local packing fraction. At any given height inside the packing, the ordering is initiated at the container walls and proceeds inward. We explore the evolution of the local as well as the height-averaged packing fraction as a function of vibration parameters and compare our results to relaxation experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure
    corecore